Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Biosaf ; 26(2): 80-89, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1031379

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has caused a global shortage of single-use N95 filtering facepiece respirators (FFRs). A combination of heat and humidity is a promising method for N95 FFR decontamination in crisis-capacity conditions; however, an understanding of its effect on viral inactivation and N95 respirator function is crucial to achieving effective decontamination. Objective: We reviewed the scientific literature on heat-based methods for decontamination of N95 FFRs contaminated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and viral analogues. We identified key parameters for SARS-CoV-2 bioburden reduction while preserving N95 fit and filtration, as well as methods that are likely ineffective. Key Findings: Viral inactivation by humid heat is highly sensitive to temperature, humidity, duration of exposure, and the local microenvironment (e.g., dried saliva). A process that achieves temperatures of 70-85°C and relative humidity >50% for at least 30 min is likely to inactivate SARS-CoV-2 (>3-log reduction) on N95 respirators while maintaining fit and filtration efficiency for three to five cycles. Dry heat is significantly less effective. Microwave-generated steam is another promising approach, although less studied, whereas 121°C autoclave treatments may damage some N95 FFRs. Humid heat will not inactivate all microorganisms, so reprocessed N95 respirators should be reused only by the original user. Conclusions: Effective bioburden reduction on N95 FFRs during the COVID-19 pandemic requires inactivation of SARS-CoV-2 and preservation of N95 fit and filtration. The literature suggests that humid heat protocols can achieve effective bioburden reduction. Proper industrial hygiene, biosafety controls, and clear protocols are required to reduce the risks of N95 reprocessing and reuse.

2.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889854

ABSTRACT

Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus [MHV]), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 min in multiple deposition solutions across several temperatures and relative humidities (RHs). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72°C and 82°C, RHs greater than 50% resulted in a >6-log10 inactivation of bacteriophages, and RHs greater than 25% resulted in a >3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions, such as phosphate-buffered saline, phosphate-buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging viruses that may be of immediate and future public health concern.IMPORTANCE Shortages of personal protective equipment, including N95 respirators, during the coronavirus (CoV) disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in health care settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates a range of RNA viruses, including both viral pathogens and common viral pathogen surrogates, after deposition on N95 respirators and achieves the necessary virus inactivation detailed by the U.S. Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatment methods are validated.


Subject(s)
Decontamination/methods , Hot Temperature , Humidity , Ventilators, Mechanical , Virus Diseases/prevention & control , Virus Inactivation , Virus Physiological Phenomena , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Saline Solution , Saliva , Serum Albumin, Bovine
SELECTION OF CITATIONS
SEARCH DETAIL